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Part 9: Rotational Motion

Rotational Kinematics

Physics (Giancoli): Chapter 8
College Physics (Openstax): Chapters 9 & 10

For rotating objects, velocity is not a universal variable. Different parts of the
object move at different speeds. Distance (x) is also not a universal variable.
Consequently, these are not good variables to describe rotational motion.

Angular Position (0) fills the role of x.

Initial Angular Position (6o) is the angular position at t=0, and it fills the role of Xo.
Angular Displacement (A6 = 6 — o) fills the role of Ax.
Arc Length (S) is the distance a part of the rigid object moves.

1 rotation/revolution = 2z radians = 360°

S =r-A0 (radians)

S meters .
0 =- = no units
T meters

Note: ‘Radians’ is a ‘dummy’ unit.

Angular Velocity (o) fills the role of v. (w is also called ‘Angular Frequency’)

Initial Angular Velocity (wo) is the angular velocity at t=0, and it fills the role of vo.
Note: ‘o’ is a lower-cased Greek letter omega. Not w.

A8 6-6,

w = = w—limAe
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Units: — rw=71r—= = —=
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The Period (T) is the time needed to make one full revolution.

The Frequency () is the rotation rate (number of revolutions per unit time)

Revolution

Revolution

Units: 1 ———=1s"1=1Hz 60 RPM = 60 ———— = 1Hz
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In rotational motion, Acceleration (a) gets broken down into two components.

Tangential Accleration (ar) changes the speed
(magnitude of velocity) of an object moving in a circle.

Radial Accleration (ar), equivalent to centripetal
acceleration (ac), changes the direction but not the speed
of an object moving in a circle.

— [g2 2
a= +as+ ag
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e Angular Acceleration (a) fills the role of a.

Uppg = 2 = L2 a = lim 22 Units; 222
Avg T ar Tt T At-0 At T2

o = rAw _ Aw) A a o = - = v2  (rw)? o2
- At - At - At - T R ¢~ r - r -

e For the special case of constant angular acceleration, a set of equations can be found from the
one-dimensional kinematic equations for constant acceleration.

V= vy+ art wr = wor + art w= wy+ at
s = so+%(v+ Vo)t rf = r90+%(rw+ rwo)t 0= 90+%(a)+ W)t

S = Sg+ vot+ %ath 70 = 10y + Twot + %ratz 0= 0+ wet + %atz

v?2 = v¢+ 2ar(s — sg) r?2w? = r’wi + 2ra(rf —ro,) w? = wi+ 2a((0 —6,)

e Rotational kinematics are similar to one-dimensional kinematics (just a change of
variable) and solved the same way.

e There are four variables (8, ®, o, and t) and two constants (6o and wo).

e Three of the variables are related in each of the four equations. In many cases you can
find the equation you need by determining which variable is absent.

Example: A wind turbine is activated as the winds reach a threshold. The blades start from rest and

accelerate uniformly to an angular velocity of 9.87 rpms in 27.4 s. Determine the angular acceleration
of the blades.

Extract Data: wo =10 o =9.87 rpms = 1.03358 rad/s t=27.4s o="7??7?

_ 987 (Rev) (1 Min) (Zn rad) _ 103358 rad
@=7 \min)\60s J\1TRev ) = * s

Be warned: 27/60 = 0.10472. 1f you fail to do this conversion,
you will be off by a factor that is close to a power of 10.

No information about position is given. The equation without position is...

rad
w 1033SBT rad

w= wygt+ at = at a=?=W=0037725—2

Example: A grinding wheel undergoes uniform angular acceleration from rest to 680 rad/s over 1.30
seconds. Then the power is removed and friction causes it to decelerate back to rest in 18.7 seconds.
Through what angle does the wheel turn during this time?

There are two different accelerations (both constants). This requires two sets of equations, one for the
acceleration and one for the deceleration. This is an odd case where both are the same.

Accelerating:
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rad

Extract Data: 6, =0 6=7?7?7 wy=0 w=6SOT a= t=130s

rad

Equation withnoo: 6= 6o+ ~(w+ wo)t 6= ~wt = %(680 )(1.30 s) = 442 rad

s
Decelerating:

rad

Extract Data: 6, =442rad 6 =777 (wy= 6SOT w=0 «a t=187s

Equation withnoa: 6 = 6, + %(w + wy)t

1 1 rad
0= 6,+ Ea)ot =442 rad + 5(680 T) (18.7 s) = 6800 rad

Alternatively, one could note that the average angular velocity is the same
value whether accelerating or decelerating.

The solution would just be wavgtnet

1 1 d d d
Wang =30 = 3(68075%) = 340752 0 = wgyyt = (3407) (1.30 5 + 187 5) = 6800 rad

N

Rotational VVectors

e While we are able to treat rotational variables one-dimensionally in most cases, they are still
vectors with magnitude and direction.

e The direction of rotational vectors is defined to be either parallel or anti-parallel to the axis of
rotation. Anti-parallel means parallel but pointing the opposite direction.

e If the object is rotating counter-clockwise in an xy-plane when viewed from above, then ® points
upward in the z-direction.

e |f the object is rotating clockwise in an xXy-plane when viewed from above, then ® points
downward in the negative z-direction.

=5

Rotational Dynamics

e As rotational kinematics showed many similarities with one-dimensional translational
kinematics, we can expect more similarities to appear in dynamics, but there are some
differences too.
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94
Concept Translational (1D) Rotational Relationship
Position X (orS) 0 S=r0
Velocity % ® V=r1o
Acceleration a a ar=ra  ag = w’r
Cause of Acceleration F 1 (Torque) =7 x F (|t] =rFsin6)
Inertia m I (Moment of Inertia) dl = r’dm
Newton’s 2" Law F =md 7 =1Ia
Work W =Fd W =10
Kinetic Energy KE-ranslational = Y2mv? KERrotational = Y21®?
Momentum P=mv L =1 L=#xDP
Force/Momentum F = E 7= %
At At

Moment of Inertia (1)

The moment of inertia is the rotational equivalent of mass (a resistance to being spun).

[ ]
An object in uniform circular motion can be looked at as either rotational
motion or as in linear translational motion (at least temporarily).
The kinetic energy of this motion should be the same either
way it is calculated. This allows us to determine a
relationship between moment of Inertia (I) and mass (m).
1 1 1
— 2 _ 2 2,.2
KETranslational - Emv - Em(rw) - Emr w
v
— 2
KERotational - E lw
1
Emrza)2 = > Jw?
[ =mr?
Note: This is only valid when all the mass is located at
the same distance (r) from the axis of rotation.
e Most of the time you will simply pull a formula from a table of standard shapes.
Xis Axis Xis hin rod abou Axis Xis slab abou
~ o Solid cylinder - Tzllxis lhl"()lllgh[ R mular cylinder * ] :L(: 1l:r(;ulg|J1-
R Hoop about A\ (or disk) about 70\ center L to . (or ring) about center
)/ eylinder axis A&/“ cylinder axis \f/TL length Rop cylinder axis i i b
I=MR? [=3MR? 1=4MI2 I=iM(R2+R2) [ =5M(2+ 42)
Axi:a; | i Axis Axis Axis
4 Hoop about o Solid cylinder Thin rod about Solid sphere Thin spherical
R any d[:':mclcr (or disk) about axis through one 2R z\hf’lll any 2R shellAaboul
v s IM’ central diameter ‘ end L to length diameter any diameter
" 1=1MR2 1 =MR?+5MI? [=iML? 1=3MR? [=3MR?
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e Moment of inertia is dependent upon the choice of axis.

e If you have multiple objects with the same axis of rotation you simply add their moments of
inertia. (Moments of inertia sum)

e The Parallel Axis Theorem allows you to calculate the moment of inertia of an object rotating
around an axis that doesn’t pass through its center of mass. To do this you need the moment of
inertia for an axis parallel to the axis of rotation and passing through the center of mass (Icm) and
the separation of the two axes (h).

I = Im+ Mh?

Example: Find the moment of inertia of a thin rod about axis through one end - to length via the
parallel axis theorem.

2

1 L 1 1 1
I'= Iy +Mh? = —MIL? +M(—) = —=ML*+—-ML* = ~ML?
o 12 2 12 4 3

Torque(r): t©=71F,=rFsinf t=Fl=Frsing |7|= |F><ﬁ'| = Frsin®

Moment of inertia of most objects is fixed (constant). In those cases, Newton’s 2" law (7 =
la) indicates torque (t) and angular acceleration (o) are proportional. This allows us to use
the behavior of an object (its angular acceleration) to indicate how much torque was
delivered when various forces are applied to it. For our example we will use a door.

Door -
Where is a good place /{,// - /
to push the door open? >

/////
//

Axis of — i
(f{ot:t?on) '//7
Hinge //»“/
Force A doesn’t work very well. A lot of force leads to little movement of the door.
Force C is the best option. A little force here is usually enough to open the door.

Force B requires more force than C, but not as much as A.
Force D doesn’t open the door at all.

e Any force that acts through the axis of rotation generates no torque.

o To generate torque a force must have a a component - to the line connecting the axis of
rotation to the point where the force acts.

e The further from the axis of rotation the force is applied the greater the torque.
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( Axis of ) F F
Rotation Y

=3l
=)

@ -

{

Lever Arm

If we apply a force Ftoan object, we define the vector 7 to start at the axis of rotation and at the
position where the force is applied. 0 is defined to be the angle between Fand 7.

e Breaking F into component (parallel and perpendicular to 7) we find:
e Fx (the component parallel to 7) generates NO torque.

e Fy (the component perpendicular to 7) generates positive torque as it rotates the door
counter clockwise (CCW).

e The magnitude of the torque (r = |7|) isgivenby: 7 =rF, = rFsin6
e Forces that create clockwise (CW) rotations are generating negative torque.
e Breaking 7 into component (parallel and perpendicular to 13) we find:

e The component parallel to F has no bearing on the torque at all.

e The component perpendicular to F is called the Lever Arm (1), and it is directly related to
the torque. Any increase in the lever arm gives a proportional increase in torque (7).

e The magnitude of the torque (t = |7|) isgivenby: 7= FIl = Frsin6
e \We gain “Leverage” by increasing the lever arm.
¢ Both viewpoints give the same result, which is often represented as a vector cross product.
|7] = |Fxﬁ| = Frsin®

There are more advanced methods of calculating vector cross products, but these are
rarely used for torque (as we already know the direction along the axis of rotation).
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Example: Three forces act on a compound wheel as shown. The forces come from ropes wrapped
around the edges of the wheel. The moment of inertia of the wheel is 30.0 kg-m? with an inner radius of
ri=25.0 cm and an outer radius of r> = 50.0 cm. Determine the angular acceleration of the wheel in
response to the three forces: F1 =80.0 N, F2 =30.0 N, and F3 = 20.0 N.

Use Newton’s 2™ Law: Y17 = Ia
To find the torque for each force vector:

(1) Determine sign on torque: CCWis “+’,
CWis *-*

(2) Find the vector 7, note it’s magnitude

(3) Determine the angle between 7 and F
(that’s 0)

(4) T= rFsiné

z T =1,F;sin90° — r,F, sin90° + 1,F;3sin90° = nF;, — nF, + k5
Z 7 = (0.250 m)(80.0N) — (0.500 m)(30.0 N) + ((0.500 m))(20.0 N)

Z‘r:Z0.0N-m—lS.ON-m + 10.0N-m=15.0N"-m

_ Tyet . 15.0N-m —OSOOrad
I 300kg-m? 52

Example: A box of mass m2 = 10.0 kg sits on a table as
shown. On one side a cord connects it to a hanging
weight of mass m: = 25.0 kg. The cord stretches over a
frictionless pulley, a solid disk of uniform density with
mass M =5.00 kg. If the coefficient of kinetic friction
between the box and table is 0.300, determine the
acceleration of the box on the table.

Make 3 force diagrams (one for each object). There are 3 unknowns (2 tensions and acceleration). This
means you will need 3 equations, one from each force diagram. Angular acceleration is not another
unknown as it is directly related to the acceleration in this problem.

The box on the table (my) accelerates to the right, which corresponds to a clockwise (CW) rotation of
the pulley (M) and a downward acceleration of the hanging weight (m1). To match the signs, for this
problem we shall let CW rotations and downward accelerations become positive.

All Rights Reserved



98 UTA Physics Department - College Physics | Lecture Notes

A A a N =W, = myg
Mg = h=ma Tl N T Fp = N = pemyg
m, al Y m, —_— T, — Fr = mya
i =g = ma 3 Vi FF N/ T2 T; = mya+ pemyg
Wi W2

ZT: T1+T2 :RTl_RTZ :R(Tl_Tz)
T2 ZT = R(myg — mia — mya — wm,g)
la = GMRZ) (g) =iMRa  la=3Yr

1
Tl sMRa = R(myg — mia — mya — wm,g)

2
%Ma = myg — ma— mya — UpMyg mya + mya +%Ma = myg — HUrmyg
Mg = g _ (my— wemy)g _ [(25.0 kg) = (0300)(10.0 kg)|(9.80m/s?) _ _m
= = = =5.75—
my+ m, +%M my 4+ m, +%M 25.0 kg+10.0kg+%(5.00 kg) $

Example: Three forces act on a compound wheel as
shown. The forces come from ropes tied to pins on the
edges of the wheel. The moment of inertia of the wheel is
30.0 kg-m? with an inner radius of r1= 25.0 cm and an
outer radius of ro = 50.0 cm. Determine the angular
acceleration of the wheel in response to the three forces:
F1=80.0N, F2=30.0 N, and F3 =20.0 N.

Z T= 1T, +71T, + 1, =11F;sin75° — r,F, sin 70° + 7, F3 sin 65°

Tyer = (0.250 m)(80.0 N) sin 75° — (0.500 m)(30.0 N) sin 70° + (0.250 m)(20.0 N) sin 65°

T 9.7547 N'm rad
Tyer = 9.7547 N - m a = 2t = =0.325—
I 30.0 kg-m? s2
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Example: A hoop, a sphere, and a solid cylinder roll down an incline. Each has
uniform density, the same mass and radius. If all three are released
simultaneously, which gets to the bottom of the incline first?

We shall use | = cMR? as it applies to all 3 objects with the correct choice of c.
The object with the highest velocity at the bottom gets there first (highest Vay)

Conservation of Energy: Einit = Erinal mgh = %mvz + %Iwz
1 1 2 1 1 1
Mgh = EMVZ + E(CMRZ) (%) Mgh = EMUZ + Echz =1+ C)EM’UZ

1 2gh 2gh
gh=(1+c)5v2 UZZE v = ’E

The object with the highest velocity at the bottom has the lowest value of ‘c’.

The sphere wins because it has more mass near the axis of rotation.

Example: A box of mass m2 = 10.0 kg sits on a table as M
shown. On one side a cord connects it to a hanging m2

weight of mass m; = 25.0 kg. The cord stretches over a
frictionless pulley, a solid disk of uniform density with
mass M = 5.00 kg. The coefficient of kinetic friction

between the box and table is 0.300. Determine the m 1
velocity of the hanging mass after it has fallen a distance
of 0.500 m.

The previous similar problem asked for acceleration, which is related to forces. This problem asks for
velocity, which is related to kinetic energy. Using conservation of energy is preferable.

The gravitational potential energy of the box (m2) and the pulley (M) remain constant. We will ignore
these as they will cancel out.
1 1 1
Einit = Erost = Erinal Einie = myghg Efinal = Emzvz + Emlvz + 51(‘)2 + mygh
Eiost = Fpd = pNd = pmygd = pyemyg(hy — h)

1 2, 1 2, 1.5
myghy — urmyg(hy — h) =5 My + S Mv + Ela) + mygh

1 2, 1 2,1 5
myghg — mygh — yemy,g(hy — h) =MV + > MV + Elw

2

1,1 1N
myg(hyg — h) — wemyg(hy — h) =5mMyV + S Mv + E(EMR >(E)

1 1 1
(my — wemy)g(hy —h) = Emzvz + Emlvz + ZMUZ
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4(my — wemy)g(hg — h) = 2m,v? + 2mv? + Mv? = 2m, + 2m; + M)v?

v2 = 4(my — wemy)g(hy — h)
2my, + 2m+ M

o J4(m1 — pmy)g(hy — h) _ J4[25.0 kg — (0.300)(10.0 kg)] (9.80 sz) (0.500m) m

=240—
2m, + 2my + M 2(10.0 kg) + 2(25.0 kg) + 5.00 kg s

Example: A solid disk (I1 = 4.00 kg-m?) is spinning about a fixed spindle
at wo = 15.0 rad/s. A second solid disk (I> = 6.00 kg-m?), which is not
rotating, is placed on the spindle and dropped onto the first disk. There is
friction between the two disks, and eventually they spin together.
Determine (A) the velocity of the two discs once they start spinning
together and (B) the energy is lost during the collision.

When spinning objects collide, it’s a good indication that conservation of momentum will be relevant.

2 rad
I wo (4.00 kgm?)(15.05%) rad
Linit = Lpi Lwy= (1 + L,)w w = = = = 6.00 —
init Final 10 = (I + 1) Ii+1I;  4.00 kg:m?+ 6.00 kg-m? s

1
Erost = Emit — Erina = 511‘*)3 - 5(11 + L) w?

rad rad

2 2
Epose = 3 (4.00 kg - m?) (15.0 T) — 2(4.00kg-m? + 6.00 kg -m?) (6.00 T) =270

Example: An old park has a large turntable for children’s play. It is initially at rest with a a radius of
1.20 m and a moment of inertia of 125 kg-m?2. A 50.0 kg woman runs at 8.00 m/s towards the edge of
the turntable and jumps on, grabbing hold of the hand rail. Determine the angular velocity of the
turntable after she jumps on.

This is also a conservation of angular momentum problem.

Linit = Lwoman = |7 X P| = |7 X m¥| = Rmv sin90° = Rmv
Lrinat = (Uwoman + lturntabie) @ = (mRZ + Dw m (mRZ + Dw = Rmv
Rimw (1.20 m)(50.0 kg) (8.00%) ad

_ _ =244 —
© T MRZ+1 - (50.0 kg)(1.20 m)? + 125 kg - m? s
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